VT Algebra Seminar — Spring 2026

Fridays • 2:30–3:30 PM • McBryde 321

January 30

Speaker: Travis Morrison (Virginia Tech)

Title: Zeta functions of modular curves and abstract isogeny graphs

Isogeny graphs of supersingular elliptic curves have broad application, from the study and computation of modular forms to post-quantum cryptography. This is in part because the family of q-isogeny graphs in characteristic p (with prime p varying, for a fixed prime q) is Ramanujan. One tool for studying a graph is its Ihara zeta function, defined as an Euler product over the primes of the graph. Defining the zeta function formally requires a graph in the sense of Serre and Bass, i.e. a directed graph equipped with a fixed-point free involution on the edge set. In general, isogeny graphs fail to be graphs in this sense. In this talk, I will discuss joint work with Lau, Orvis, Scullard, and Zobernig in which we introduce abstract isogeny graphs along with their zeta functions; these graphs capture the combinatorial structure of supersingular isogeny graphs (with level structure) . I will survey some of our results, including an analogue of Ihara’s determinant formula, showing in particular that the zeta function is rational. We use this formula and the Eichler-Shimura relation to give a formula relating the zeta function of a q-isogeny graph with level-H structure (for certain H, including B0(N) and B1(N)) to the Hasse-Weil zeta functions of two associated modular curves over the finite field Fq, generalizing results of Hashimoto, Sugiyama, and Lei-Muller.
February 6

Speaker: Tommaso Botta (Columbia)

Title: 3d mirror symmetry and bow varieties

As advocated by Aganagic and Okounkov, mirror symmetry in three dimensions admits an enumerative interpretation in terms of quasimap counts to mirror dual symplectic varieties. Specifically, the generating series of these counts, known as vertex functions, are expected to match, up to a distinguished class in elliptic cohomology known as the elliptic stable envelope. After reviewing this general picture, I will focus on the case of bow varieties, which capture mirror symmetry in affine type A, and discuss what we know and what we are beginning to understand. (joint with subsets of R. Rimanyi, H. Dinkins, and S. Tamagni).
February 13

Speaker: Heidi Goodson (Brookly College and CUNY Graduate Center)

Title: An Exploration of Sato-Tate Groups of Curves

The focus of this talk is on families of curves and their associated Sato-Tate groups - compact Lie groups predicted to determine the limiting distributions of coefficients of the normalized L-polynomials of the curves. Complete classifications of Sato-Tate groups for abelian varieties in low dimension have been given in recent years, but there are obstacles to providing classifications in higher dimension. In this talk, I will give an overview of techniques, results, and challenges in this area of research. Concrete examples will be provided throughout the talk.
February 27

Speaker: Freddy Saia (UIC)

Title: tbd

tbd
April 24

Speaker: Olya Mandelshtam (Waterloo)

Title: tbd

tbd